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ABSTRACT

Given a specific spectra of single-particle reduced density matrices of
three qubits, the singular symplectic reduction method is applied to the
projective Hilbert space of tripartite pure states, under the local unitary
group action. The symplectic structure on the principal stratum of the
symplectic quotient is obtained. A criterion from which the elements
of the local normal model of the principal stratum can be constructed
up to an equivalence relation and also the components of the reduced
Hamiltonian dynamics on it are investigated. It is discussed that other
lower dimensional strata are isolated points and so they are the fixed
points of every reduced Hamiltonian flow on the original manifold.

1. Introduction

In general, if M is a compact symplectic manifold equipped with a closed
non-degenerate 2-form w, under the proper and Hamiltonian action of a com-
pact Lie group K, the components of the moment map J : M — £ are con-
served with respect to integral curves of Hamiltonian vector fields, i.e. the

*The results in this paper are the preliminary results for the subsequent paper (Molla-
davoudi and Zainuddin).
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Néether’s theorem. Here, £* is the dual of the Lie algebra ¢ of K. The
method is initiated with the Marsden-Weinstein regular reduction in Mars-
den and Weinstein (1974) and continued in Bates and Lerman (1997); Ortega
and Ratiu (2004); Sjamaar and Lerman (1991) for the singular reduction of
Hamiltonian manifolds. In the latter case, the resulting symplectic quotient
Mg = J71(€)/ Ky is a stratified symplectic space, in which the strata are sym-
plectic manifolds. The advantage is that this method enables us to obtain the
components of the reduced dynamics on the symplectic strata ]\If(H) of the
reduced space M.

In the current paper, we consider the complex projective Hilbert space P(H)
of a tripartite pure states, as a Kdhler manifold, which is acted upon properly
and in a Hamiltonian fashion by the local unitary group K = SU(2)*#, and the
corresponding symmetry is preservation of (shifted) spectra of single-particle
reduced density matrices, encoded in the components of the associated moment
map (Sawicki and Kus, 2011; Sawicki et al., 2011). Therefore, we consider the
symplectic singular reduction method in order to obtain the reduced symplectic
quotient M¢ = .]_1(5)/1(57 for a given & € £*, with respect to the conservation
of single-particle reduced density matrices. The geometry and topology of the
K-orbit space of tripartite pure states for three qubits are studied in Walck
et al. (2005), using the algebra of K-invariant polynomials, and in Iwai (2007),
using the bipartite decomposition procedure.

In Sawicki et al. (2013), the dimension of the principal stratum of the sym-
plectic quotient Mg, for a fixed £ in the associated moment polytope, is studied
in case of tripartite pure states of three qubits. In the current paper, which
is motivated by the work in Sawicki et al. (2013), the symplectic structure
W™ on the principal stratum ]Mf(pri") of the stratified symplectic space M¢
is derived for a fixed £ € int(A), where A represents the moment polytope of
the proper Hamiltonian action of K on M = P(H). In addition, a criterion
is obtained from which the elements of the local normal form on the princi-
pal stratum Afép ") can be determined up to the free action of the principal
isotropy subgroup. Moreover, from the symplectic structure, the components of
the reduced Hamiltonian dynamics, namely the reduced Hamiltonian functions
fg(1Drm> € C‘X’(]Méprm)) as well as their induced Hamiltonian vector fields, are
investigated on the principal stratum. Furthermore, by definition of a strat-
ified symplectic space, symplectic structures on all lower dimensional strata
can be obtained by the symplectic structure on the principal stratum. From
the quantum mechanical point of view, the reduced dynamics on the principal
stratum can shed some light on the non-local perturbations of generic points
of tripartite pure states of three qubits, whose entanglement is invariant under
the local unitary operations.
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The outline of the paper is as follows. In section 2, the singular symplectic
reduction is briefly reviewed. In section 3, the local unitary action on the pro-
jective Hilbert space of a composite quantum system, as well as the preliminary
notation are introduced. In section 4, the singular symplectic reduction method
is applied to the projective Hilbert space under the local unitary action and
the local normal form, the symplectic structure on the principal stratum, the
reduced dynamics on it and the dynamics on other lower dimensional strata
are discussed in further details. Finally in section 5 we summarize the results.

2. Singular Symplectic Reduction

Let (M,w) be a symplectic manifold and K a compact Lie group acting
properly on M. The Lie group action K > g — &, € Diff(M) is a group
homomorphism, whereas the Lie algebra action M x ¢ 5 (p, X) — ¢x(p) €
TM is a Lie algebra anti-homomorphism. The fundamental vector fields of
X €t ie ¢x = Xy € X(M) of the Lie group K-action is defined by
ox(p) = Xu(p) = %'z:o Pexpex)(P), at p € M, which constitutes the Lie
algebra -action.

If the K-action @ is proper, the orbit space M /K is a Hausdorff topological
space, which is the case for compact Lie groups, such as the local unitary group.
The union of orbits having the same orbit type is called an orbit type stratum
of M and is denoted by M) through p € M, such that H is conjugate in
K with the stabilizer K, and its image under the projection 7 : M — M/K
is called the orbit type stratum of M/K and is denoted by M /K through
w(p) =z e M/K.

According to the classical N6ether’s theorem, for a symplectic manifold
(M,w) acted upon by the Lie group K in a Hamiltonian fashion, the com-
ponents of the associated equivariant moment map J : M — €* are preserved
during the Hamiltonian dynamics, i.e. Jop, = J, where ¢; is the corresponding
Hamiltonian flow. The symplectic manifold (M, w), endowed with a symmetry
or a conservation law, may be reduced to the corresponding quotient space Mg
containing equivalence classes of level set of the moment map J~*(€) under the
action of isotropy group K¢, for a fixed £ € £*. If the action of the group K on
the manifold M is free, i.e. K, = {e}, for all p € M, and assuming that the
action of the closed subgroup K¢ is free and proper on J -1 (&), then the result-
ing quotient space M := J 7 (€)/Kg, for a given regular value of the moment
map & € £*, would be another symplectic manifold equipped with the induced
symplectic structure we, defined by 77 we = i w, where 7§ : J7HE) - M is
the projection map to the symplectic reduced space and if : J (&) < M is the
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inclusion map. This reduction procedure is known as the Meyer-Marsden-
Weinstein (Marsden and Weinstein, 1974; Meyer, 1973), or the regular sym-
plectic point reduction (Ortega and Ratiu, 2004), since the point ¢ € €* is
fixed.

If the condition on the freeness of Hamiltonian action of the Lie group K
on the symplectic manifold (M,w) is dropped, then the level set J~(€) is a
topological space. The orbit space Mg := J &) /K¢ is endowed with the
quotient topology. In Sjamaar and Lerman (1991) it is shown that for the
Hamiltonian action of a compact Lie group K, the quotient space M¢—¢ is a
stratified symplectic space, satisfying the Whitney’s condition, i.e. each strata
is a symplectic manifold and the pieces are glued together nicely. This result
is extended to the case of the proper action of a Lie group K in Bates and
Lerman (1997). For more details one can refer to Ortega and Ratiu (2004).

Now, let (M,w, K,J) be a Hamiltonian K-space, where (M,w) is a sym-
plectic manifold acted upon properly and symplectically by the compact Lie
group K and J : M — #* is the associated equivariant moment map, such that
J(p) =&, with p € M and £ € € as a value of J. Let the isotropy subgroup
K, is denoted by H. Then,

¢ J7HEN Mgy is a submanifold of M.

e The set ATE(H) = (J_l(ﬁ)ﬁ]M(H))/Kg has a unique quotient differentiable
structure such that the projection map 7T§H) I7HON Mgy — M’g(H) is

a surjective submersion.

. (MéH),wém) is a symplectic manifold, where the symplectic structure
wéH) is defined by
(H)\# H)\« (H
(i) w = (™), (1)
where iéH) : Jfl(ﬁ) N Mgy = M is the inclusion map. (ZWEH),wém) is
called the singular symplectic point stratum.

e The connected components of J7(£) N My are left invariant under the

flow ¢; of the Hamiltonian vector field X, for h € C°°(M)*X, which also

commutes with the K¢-action. Therefore, the induced flow gat(m on M, E(H)

is defined by

Wélﬂ o ;0 iéH) = gogH) o 7T£H). (2)
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e The reduced Hamiltonian function hém : M 5 R of the flow @EH) on

3
M s defined by
héH) o TI'éH) =ho iéH). (3)

Then the quotient space M is a stratified symplectic space with (M, é(H),wéH))
as the strata. This is called the symplectic stratification theorem. For more
details and the proofs one can refer to Bates and Lerman (1997); Ortega and
Ratiu (2004); Sjamaar and Lerman (1991).

3. Local Unitary Operations

Let’s consider a composite quantum system, consisting of N distinguishable
n;-level quantum subsystems, for ¢ = 1,--- | N, in its global pure state. The
space P(H) of global quantum pure states is a (Hf\;l n;—1)-dimensional Kihler
manifold, equipped with both Riemannian and Symplectic structures, induced
from the real and imaginary parts of the Hermitian inner products in H =
& Hi respectively. Let A, B € su*(H), be the observables acting linearly
on H. The symplectic structure w at p € P(H) is defined by Benvegna et al.
(2004)

_ i @IA,BlY) _ i
wp(Xnr, Yor) = W iTr(pUJ[Av B)), (4)
where X7, Yy € T,P(H) are given by
d
Xulp)= 5| mlexp(-idt) ) = i (A, py], A€ su™(H),
t=0

for all p € P(H), where 7 : H — P(H), ¥ — p = py is the canonical projection.
The corresponding local unitary transformation Lie group K is the compact Lie
group K = SU(n;)*~ acting on the manifold P(H), where H = @ 5 H; and
H; =C" fori=1,---,N. The natural action of the group K on H, i.e. g.¢ =
a1 ®---@gnyy € H, for g = (g1,-- ,gny) E K and Y =91 ®--- @9n € H,
with 1; € H,;, is then projected to M = P(H) to determine the action of K on
the Kéhler manifold M, namely

®: K x M — M, (g,p) — ®4(p) = gppg ", (5)

where p = py = |)(¥|/ (YY) € M = P(H). Therefore, Xp(p) = py =
—i[n, py], where ) € ¢*. The isomorphism € = £*, as well as for su(H) = su*(H),
is due to the Killing-Cartan metric defined on K, i.e. (X,Y) := —Tr(XY)/2,
for X,Y €& ie. if n € €, then —in = X € ¢ and the Killing-Cartan metric is
satisfied for an arbitrary Y € ¢.
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The action of the local unitary group K is proper and symplectic, since the
Lie group K is a compact Lie group preserving the symplectic structure of the
Kéhler manifold P(#), i.e. ®;w = w, for every g € K. Hence, the quadruple
(M,w, K,J) is a Hamiltonian K mamfold with the moment map J: M — ¢*,
given by Sawicki and Ku§ (2011); Sawicki et al. (2011)

1 1 1 .
I(p) = (p — )@ (p? - aolm) @@ (P — —L) e, (6)

where p@), for j = 1,---, N, represents the jth-subsystem’s reduced density
matrix. Therefore,

ATx (Var)(p) = d{3(), X) (Var) () = ix,,0 = (X, Vi) = =5 Te(py[X, V1),

where X € ¢ and for every YV € su(H) with

Xum(p) = ox(p) € tp:={ox(p) € T,M : ¢x(p) = —i[n,pl,n € '},
Yur(p) € T,M = {Yu(p) : Yau(p) = —i[A,p], A € su*(H)},
with —in = X € t and —1A =Y € su(H).

4. Singular Reduction for Local Unitary
Operations

Following the notation in Sawicki and Kus (2011); Sawicki et al. (2011), any
state ¢ € H can be written as

1
Z Cirigis iy @ €4y @ €4y, (7)

i1,12,i3=0

where {e;, } are orthonormal bases for the Hilbert spaces Hy, for k = 1,2,3.
Therefore, the moment map J : P(H) = M — ,p = py = [¥){(¥|/(|Y) —
J(p) can be written as

3) = (00— 512) (0P ~ 1 12) (o~ 115) € ¥ = s (2) o’ (2) D (2),
(8)

1 ~ . e
where (p(’“))mn = 2131‘132:0 Ciy i Ciy iyia» and the sum is over all pair indices

except m and 7 at the kth place. Hence, one can write the associated Hamil-
tonian function Jx(p) to X € ¢ as

i 3 1
']X(p) 2 Xp’d) Z Z zk,]k elk|Xkej;c>’ (9)
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where X € su(2), and can be interpreted as the summation of the expecta-
tion values of the locally defined Hermitian operators iX; € su*(2) on each
laboratory.

Recall that the Lie group K acts on its Lie algebra € by adjoint action, given
by Ad : K x & — K, (g, X) — Ad,X = gXg~!. The corresponding coadjoint
action is defined by (Ady ¢, X) = (§,Adg1 X) = (€,971 X g), for € € £, where
(., .) represents the natural pairing between ¢ and ¢*. Therefore, the resulting
orbit K. = {Ad;{ tge K } is called the coadjoint orbit. It is well-known
(Bott, 1979; Kirillov, 2004) that each coadjoint orbit K.£ intersects the dual of
the Cartan subalgebra, i.e. the maximal commutative subalgebra t* of £*, in
accordance to the action of the Weyl group W = N(T')/T, where N(T') is the
normalizer of the maximal torus 7" of K. In fact, the Cartan subalgebra t is
the Lie algebra of the maximal torus 7" and t = t*. Hence, modulo the action
of the Weyl group W on the Cartan subalgebra t*, each coadjoint orbit K.
intersects the corresponding positive Weyl chamber t = £*/K only once. In
fact, t} parametrizes the set of coadjoint orbits in £* and the isotropy subgroup
K¢ for the point £ € 7 depends only on the open face of t containing £ and
K¢ =T, for £ € int(t}) (Meinrenken and Woodward, 1999).

In our particular case of interest, the Lie group SU(2) consists of 2 x 2 spe-
cial unitary matrices and the Lie algebra su(2) is the space of traceless, anti-
Hermitian matrices. The maximal torus 7' is the subspace of diagonal special
unitary matrices and the associated Cartan subalgebra t contains traceless, di-
agonal anti-Hermitian matrices. So, the Weyl group W is the symmetric group
So acting on the Cartan subalgebra t by permuting diagonal elements. There-
fore, the positive Weyl chamber t' consists of traceless, diagonal Hermitian
matrices, such that the diagonal elements are ordered non-increasingly. Hence,
the interior of the positive Weyl chamber int(t} ) consists of those A € ., such
that all their eigenvalues are distinct.

To every compact and connected Hamiltonian K-manifold (M, w, K,J),
with the moment map J : M — ¥ is associated a convex polytope A :=
J(M) N i, called the moment (or Kirwan) polytope (Guillemin and Stern-
berg, 1982; Kirwan, 1984). The composite invariant moment map J' : M —
& — t,p — J(p) = J(K.p) Nt is an open map onto its image Knop
(2002), such that all its fibers are connected Kirwan (1984). Hence, the points
&€ A=J'(M) C t are sufficient to find the symplectic quotients M, and

their strata M§H>, where £ € A and H < K.
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4.1 Principal Stratum

In Sawicki et al. (2013), by using the fact that the principal orbit type
stratum M ,ip) is a connected, open and dense manifold of the orbit type
stratification of M, and is of maximum dimension, since the isotropy subgroups
K, of the generic points p € M of the projective Hilbert space of tripartite
pure states are discrete (Carteret and Sudbery, 2000), it is discussed that the
image of the composite invariant moment map J '(]\/[(prin)) contains the relative
interior of the moment polytope int(A) = J(Mprin)) Nint(t} ). Also it is shown
that the principal stratum Mép”“) =J N Mprin)) /K¢ of the symplectic
quotient Mg = J71(€)/Ke, for all £ € int(A), is two dimensional.

Recalling the symplectic stratification theorem in section 2, Mg, for { €
int(A) C 3, is a stratified symplectic space, with (]\/Iém,wéH)) as the sym-

plectic strata, for all H < K. To find the reduced symplectic structure wéprin)

on the principal stratum of Mg(pri“), for the principal isotropy subgroup Hpyin,
we have to note that Jfl(é) N M(prin) is a submanifold of M, and also

(Z.éprm) ) ) — (ﬂ_éprm) ) *wéprm) ,

i.e.
wo(Za1(p), Zhy (p)) = WP (TrP™ (Zar(p)), TrP™ (Z3y (p)),  (10)
at p € Jil(&) N ]\/[(prin)7 where ZM(p)7 Z]’W(p) € TP(Jil(é.) N ]\/j(prin))7 and
TaP™ T (I7HE) N Mpriny) = TeMP™, 2 = 7P (p) € MP™.

Moreover, as it is proposed in Sawicki et al. (2013), we have T,(J~'(&) N
Mpriny) = (£.p), where ()“ represents w-orthogonality, since the map d,J :
T,M — ¥ is surjective at p € M) with discrete isotropy subgroups K, =
Hyyin. Therefore Abraham and Marsden (1987),

T, MP™ 2 T, (37(€) N Mpriny)/ (B¢.p) = Vi, (11)

where t¢.p = {Xum(p) = ¢x(p) € £p: ox(p) = —i[n,pl, n € & = '}, for
—in=X €t =tand { € int(A). In fact, the space &.p is the degeneracy
space introduced in Sawicki et al. (2011), for which the dimension represents
a measure for quantum entanglement of pure states. Locally, the subspace
Ve = (8.p)/(te.p) = (£.p)¥/((L.p)¥ N (L.p)) is the symplectic subspace of (£.p)*
in the Witt-Artin decomposition of T,M for the Hamiltonian action of the
compact Lie group K on (M,w) (Ortega and Ratiu, 2004). It is also called the
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symplectic normal space in the Marle-Guillemin-Sternberg local normal form
(Guillemin and Sternberg, 1984; Marle, 1985), as a local model for a symplectic
manifold M equipped with a Hamiltonian action of a compact Lie group K
around any orbit K.p in the fiber J~!(£), namely

Y =K xg, ((b/t)" % Vi),

whose elements are equivalence classes [g, p, v], by the free action of the isotropy
subgroup K, = H on K x (({35/%)* X Vm), given by

h. (g/ Ps U) = (gh‘717Ad;;*1p7 h’l})

The symplectic normal space V,, is defined as in the Eq. (11). There exists a
2-from wy on Y, which is symplectic near [e,0,0] and so the orbit K.p can be
considered as the zero section in the normal bundle Y. Also the Lie group K-
action on Y, which is given by ¢’.[g, p,v] = [¢'g, p,v] is a Hamiltonian action
and therefore is equipped with a moment map Jy : Y — £*, given by

Iy ([9,p,0]) = Adg+ (4 p + Tv (v)),

where the moment map Jy : V,, — b* for the linear H-action on the symplectic
normal space V is quadratic homogeneous and is described below. Therefore,
the Hamiltonian K-manifold (M,w, K, J) is locally modeled by (Y,wy, K,Jy)
around every orbit K.p at p.

Recall that the closed subgroups of the Lie group SU(2) are as follows:
the group SU(2) itself, the maximal torus U(1), the normalizer in SU(2) of
the maximal torus U(1) and a collection of finite subgroups. Therefore, the
principal isotropy subgroup Hy,in belongs to the set of finite subgroups of the
Lie group K = SU(2)*#, collectively denoted by I'. Hence, the local normal
form Y around the orbit K.p, where p € J71(£) N M (priny, is given by

Y

K X, (& x (&p)7/(t.p))
{lg,p,0]lg € K, p e g =", v € (£p)*/(tep),
l9,0,9] = [gh™", Ad}_.p, h.v], Vh € Hpm]} , (12)

with Jy([g, p,v]) = Adj-.1 (£ + p), since for discrete isotropy subgroup K, =
Hopyrin, the moment map Jy is the zero map and Jy (v) = 0, for every v € V,
and the isotropy subalgebra ¢, is trivial.

In fact the fixed point set VTH of the symplectic normal space V. is locally

isomorphic to the tangent space to the symplectic strata T, M, S(H), for H < K
and £ € €. More precisely, in the local normal form the symplectic normal
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space V,, is acted upon properly, linearly and in a Hamiltonian fashion by the
isotropy subgroup K, = H, and is therefore equipped with the associated
moment map Jy : Vo = b*, u — Jy(u), defined by (Jv, X) = Twy (X.u,u),
for every X € h and u € V,, where wy is the symplectic structure of V.
Hence, Jy(u) = 0, for every u € VI = {u € V, : hau = u,Vh € H}.
Therefore, V.1 =V, if H is a discrete isotropy subgroup, as is the case here
for H = Hppip-

In other words,

TP (ep) = Ve = T.MEP™ 2 (6p)/ (e.p),
Zu(p) = TrP™ (Z (p) € Vi, (13)

where (£.p)* = {Ya(p) € T,M : wp(Xnm(p), Yar(p)) = 0, VXp(p) = ox(p) €
t.p}, can be re-written as

(kp)” = {YM(P) €T,M : wy(Xnm(p), Yu(p)) = —%TI'(M»[X Y])=0,VX ¢ ?}7

where X/ (p) = ¢ox(p) = —iln, py), for n € £, ie. —in =X € ¢, and Yy (p) =
—i[A, py], for A € su*(H), i.e. —iA =Y € su(H). Therefore, if we define

Vy = {A esu*(H): Tr(py [0, A]) =0,Vn € &/t =2 £ /t"}, (14)

then, V, = {Yu(p) € T,M : wp(Xa(p),Yu(p)) = 0,VXu(p) = ox(p) €
t.p/t.p}, can be re-written as

Vo = {Tnf™ (Yu(p) € T,M : TrP™ (Yar(p) = =i [A,py). A€ V.
(15)

Equivalently, wy, (X (p), Yar(p)) = 0, if and only if dJx (Yar)(p) = 0, since
dJx (Yar)(p) = wp(Xar(p), Yau (p)),

for Xp(p) € t.p and Yar(p) € T,M. Hence, the symplectic structure wéprm) on
the principal stratum M, éprin) is given by

rin rin rin i
(T (23 (0), Tr™ (24 0) = 5Te(04 12,27, (16)

where Zy(p), Z},(p) € (tp)¥, and T7'réprin)(ZM(p))7 Tﬂéprin)(Z}VI(p)) eV,
namely Z,Z’ € V. Therefore, in our particular case of interest, if {e;; }, with
i; = 0,1, represent orthonormal bases for the Hilbert spaces H;, for j = 1,2, 3,
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then {e;, ®e;, ®e;, : 15 =0,1, j =1,2,3} represents an orthonormal basis for

the Hilbert space H = ®§’:1"Hj. Recalling the Eq. (7), V, can be obtained by
finding those non-local Hermitian operators A € su*(#) such that

Tr(py [, A])

1 1
Z Z CivinisCjrjngs (€ €3 €3 |, Alej, €j, €4)

i1,42,i3=0 j1,J2,j3=0

- 0, (17)

for all n = ny @ ne @ n3, with n, € su*(2)/t*(2), for k = 1,2,3. Following
Sawicki et al. (2011), let E;; denotes the matrix with 1 in the (¢, j)-position,
with ¢ # j, and zero elsewhere, then the matrices E;; + E;; and i(E;; — Ej;)
form a basis for su*(2)/t*(2) 2 R?, i.e. spanned by

{0 )( o))

since for each group SU(2) = we have SU(2) — SU(2)/T, as the Hopf
fibration, namely SU(2)/U(1) % CP(1).

4.2 Reduced Dynamics on Principal Stratum

(prin)

The symplectic structure w, on the principal stratum ]Wg(pri") allows

us to define on the space of smooth functions C>°(M, (prm)) a Poisson bracket
{ LA }(prm) as

{ff(prirl)7géprin) }(prin) (z) = wéprin)(Xf(x)’ X, (z)), (18)

where Xy, X, are the corresponding Hamiltonian vector fields of the reduced
Hamiltonian functions féprm),géprm) € C'°°(.M§(prm)), defined by the Eq. (3) as

( §prm)) f(prm) ( éprm)) f,
namely
rin Tin 1 —
I @ W) = f0) = 5 T (Fpy), p€IHON Mipriny, (19)
where f(p)s are the K-invariant smooth functions, for all —iF € su(#), i.e.

f(p) € C=(M)E, for all p, = p € M, since the Hermitian structure (, ) on
the Hilbert space ‘H is K-invariant. In other words,

(rPy {5 gL @) = G {f.gh () = {9} ) (20)

(prin)
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where p € J7H(€) N M priny and f,g € C°(M )& denote the corresponding K-
invariant smooth Hamiltonian functions. Recalling the Eq. (16), the induced
Hamiltonian vectors on T, M, éprm) is given by

Xp(@) = Xp(xP™ () = TaP™ (X P (p)) € Ve, (21)

such that Xj(\f;)(p) € (bp)¥ C T,M, for F € V. Hence, the expectation values
ff(prm)(:r) = 2 Tr(Fpy), such that py = p € I n M prin) and for the
Hermitian operators F' € V are the smooth reduced Hamiltonian functions

generating the reduced Hamiltonian dynamics on the principal stratum M, éprm),
namely

FE (X)) = i 0™ = o (X4 (2), X, () = STrlpu[F G, (22)

for every G € V] and with the induced Hamiltonian vector fields X¢(z) =
—i[F, py] € V; and X,4(z) = —i[G, py] € V. The Poisson bracket (18) can
help us to determine the Hamiltonian flows on the principal stratum Méprm).
Let 99?’“”) (z) and ¢¢(p) denote the Hamiltonian flows of fg(p"in) S C“(Méprin))
and f(p) € C°(M)¥ such that féprin)(gpiprm (z)) = Flei(p)), forp e I ()N
Mpriny and z = Wépri") (p). Then,

(prin)

dge
dt

@) = Yo = {9} ()

(prin) p(prin) (prin)
= ) x)), 23
{olrm gy @), )
for every gépri") S C”(Mépri")), such that gépri")(x) = g(p). Therefore, from
the Egs. (18) and (23), it is implied that

dfg(prin) (l)() _ wéprin) (Xf (.’L‘), . )7 (24)

where X (p) € V,, for all féprin) (z) = $Tr(Fpy), such that F € V, ¢ € int(A)
and P=py € Jil(f) N M(prin)-

In Sjamaar and Lerman (1991), it is shown that the connected components
of the strata are symplectic leaves of the quotient Mg, i.e. let x1,22 be two
points in the connected component of a stratum in M, then there exists a
piecewise smooth path joining x; to zo consisting a finite number of Hamilto-
nian trajectories of smooth functions in C*° (M), since their Hamiltonian flows
preserve the stratification and also the restriction of their flows to a stratum
equals to the Hamiltonian flows of the reduced Hamiltonians.
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Put it another way, as in Cushman and Sniatycki (2001), a continuous

curve gpiprm) st te] — ]Wg(pml) is a piecewise integral curve of Hamiltonian
vector fields of smooth reduced Hamiltonians, if the interval [t1,¢5] can be
partitioned into finite number of sub-intervals [¢;,t;41], for j =1,--- , k, such

that the restriction of the flow <p§prin) to the sub-interval [t;,¢11], i.e. Ap,(f]prin) :

[t tjt1] — ]Mf(pri"), is the integral curve of the Hamiltonian vector field X
prin)

every t € [t;,t;+1] and every géprin) € C°°(M§(pri“)). Then every two points

xr1,T2 € j\/[éprin)
vector fields.

of a reduced Hamiltonian ff( , namely the solution of the Eq. (23), for

can be joined by a piecewise integral curves of Hamiltonian

Moreover, the symplectic normal space V;;, or better V, in the Eq. (14),
represents the space of non-local time-independent quantum control Hermitian
operators (Hamiltonians), which can induce unitary entanglement dissipation
(Solomon, 2012) for the generic points of a composite quantum system con-
taining three qubits. However, this is not a true dissipation process, since the
reduced flow @Ep“n) in the principal stratum ]V[ép“n) consists of a sequence of
one-parameter family of local diffeomorphisms corresponding to the induced
Hamiltonian vector fields and so a reversible process. Of course one has to
note that the reduced dynamics and so the unitary entanglement dissipation
only occurs on MP™ | for instance the entanglement type of the separable
ps or bi-separable py, states, for £ = 1,2,3, can not be changed unitarily as
discussed above, since J'(p;) and J'(py, ) are not included in the int(A) and so
Pes P, & IHE N M prin)- The symplectic reduced space for other values of
the moment map not included in the interior of the moment polytope A will
be further discussed in the subsequent section 4.3.

4.3 Dynamics on Lower Strata

If, for a given ¢ € int(A), the principal stratum (Méprm) wéprm)) is a two

dimensional symplectic manifold, then all other lower dimensional strata M, (H>,

for Hprin # H < K, would be zero dimensional, i.e. isolated points, since all the

strata M, g(H) are symplectic manifolds. Therefore, they are the fixed points of all

Hamiltonian vector fields Xy on ZWEH), for every féH)(qrém(p)) = f('iém (»)),

such that f € C>(M)¥ and ff(H> S C’°°(]W£<H))7 and TFEH) I )N Mgy —
H (H) | -

M and i 37HE) N Mgy — M.

In other words, they are relative equilibria in the projective Hilbert manifold
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M (Sjamaar and Lerman, 1991). Recall that a point p € M is called a relative
equilibrium, if and only if the integral curves of a Hamiltonian vector field X ](\?),
for h € C°(M)¥, is contained in the orbit K.p, so every point in the orbit K.p
is also a relative equilibrium. The situation is the same for other points £ # 0
on the boundary of the moment polytope A, since as it is shown in Sawicki
et al. (2013), their symplectic reduced spaces M are zero dimensional and so
they represent relative equilibria in the original manifold M = P(H) too.

5. Conclusions

In this paper, the singular symplectic reduction procedure is applied to the
projective Hilbert space of tripartite pure quantum states, under the local uni-
tary group action, for a system consisting of three qubits. Given a specific
(shifted) spectra of the single-particle reduced density matrices, as the compo-
nents of the associated moment map, the symplectic structure on the principal
stratum is obtained and it is shown that the Eq. (17) provides us with a
criterion from which the elements of the local normal model on the principal
stratum of the symplectic quotient M, can be constructed up to the action of
the principal isotropy subgroup.

Moreover, from the symplectic structure of the open, dense and connected
principal stratum, the induced Hamiltonian vector fields, the reduced smooth
Hamiltonian functions and their corresponding reduced Hamiltonian flows are
investigated on the principal stratum. Furthermore, it is discussed that for
a given spectra of the single-particle reduced density matrices, other lower
dimensional strata are isolated points and so they are the fixed points of every
reduced Hamiltonian flow, which are known as the relative equilibria in the
original manifold M.

From physical point of view, the reduced Hamiltonian flow on the principal
stratum, which contains a finite sequence of the integral curves of the induced
Hamiltonian vector fields, provides a reversible unitary dissipation process for a
composite quantum system containing three qubits. Each reduced Hamiltonian
function can be obtained locally from the space of time-independent quantum
control Hermitian operators. Finally, while the original projective Hilbert space
is a Kéhler manifold, the metric structure on the symplectic reduced space, and
in particular on the principal stratum, as well as the exact computation of the
symplectic normal space, will be discussed elsewhere.

60 Malaysian Journal of Mathematical Sciences



On the Symplectic Reduced Space of Three-Qubit Pure States

Acknowledgements

This work is partially supported by the Universiti Putra Malaysia, Research
University Grant Scheme (RUGS) number 05-02-12-1865RU.

References

Abraham, R. & Marsden, J. E. Foundations of Mechanics. Addison-Wesley
Publishing Company, Inc., Redwood City, CA., second edition edition, 1987.

Bates, L. & Lerman, E. Proper group actions and symplectic stratified spaces.
Pacific Journal of Mathematics, 181(2):201-229, 1997.

Benvegnu, A., Sansonetto, N., & Spera, M. Remarks on geometric quantum
mechanics. Journal of Geometry and Physics, 51(2):229 — 243, 2004.

Bott, R. The geometry and representation theory of compact lie groups. In
Representation Theory of Lie Groups, number 34 in London Mathematical
Society Lecture Note Series, pages 65-90. Cambridge University Press, 1979.

Carteret, H. A. & Sudbery, A. Local symmetry properties of pure three-qubit
states. Journal of Physics A: Mathematical and General, 33(28):4981, 2000.

Cushman, R. & Sniatycki, J. Differential structure of orbit spaces. Canadian
Journal of Mathematics, 53:715-755, 2001.

Guillemin, V. & Sternberg, S. Convexity properties of the moment mapping.
Inventiones Mathematicae, 67:491-513, 1982.

Guillemin, V. & Sternberg, S. A normal form for the moment map. In
Sternberg, S., editor, Differential geometric methods in mathematical physics
(Jerusalem 1982), Math. Phys. Stud., 6, pages 161-175. D. Reidel Publishing
Company, Reidel, Dordrecht, 1984.

Iwai, T. The geometry of multi-qubit entanglement. Journal of Physics A:
Mathematical and Theoretical, 40(40):12161, 2007.

Kirillov, A. A. Lectures on the Orbit Methods, volume 64 of Graduate Studies
in Mathematics. American Mathematical Society, USA, 2004.

Kirwan, F. Convexity properties of the moment mapping, iii. Inventiones
Mathematicae, 77:547-552, 1984.

Knop, F. Convexity of hamiltonian manifolds. J. of Lie Theory, 12:571-582,
2002.

Malaysian Journal of Mathematical Sciences 61



Saeid Molladavoudi

Marle, C. M. Modéle d’action hamiltonienne d’un groupe de lie sur une variété
symplectique. Rend. Sem. Mat. Univ. Politec. Torino, 43(2):227-251, 1985.

Marsden, J. & Weinstein, A. Reduction of symplectic manifolds with symmetry.
Reports on Mathematical Physics, 5(1):121 — 130, 1974.

Meinrenken, E. & Woodward, C. Moduli spaces of flat connections on 2-
manifolds, cobordism, and witten’s volume formulas. Advances in Geometry,
Progr. Math., 172:271-295, 1999. Birkh&user, Boston, MA.

Meyer, K. R. Symmetries and integrals of mechanics. In Piexoto, M., editor,
Dynamical Systems, pages 259-273. Academic Press, 1973.

Molladavoudi, S. & Zainuddin, H. Symplectic quotient of pure three-qubit
states under local unitary transformations. submitted, 2014.

Ortega, J.-P. & Ratiu, T. S. Momentum Maps and Hamiltonian Reduction,
volume 222 of Progress in Mathematics. Birkhaiiser, Boston, 2004.

Sawicki, A. & Kus, M. Geometry of the local equivalence of states. Journal of
Physics A: Mathematical and Theoretical, 44(49):495301, 2011.

Sawicki, A., Walter, M., & Ku$, M. When is a pure state of three qubits de-
termined by its single-particle reduced density matrices? Journal of Physics
A: Mathematical and Theoretical, 46(5):055304, 2013.

Sawicki, A., Huckleberry, A., & Kus, M. Symplectic geometry of entanglement.
Communications in Mathematical Physics, 305:441-468, 2011.

Sjamaar, R. & Lerman, E. Stratified symplectic spaces and reduction. The
Annals of Mathematics, 134(2):375-422, September 1991.

Solomon, A. I. Entanglement dissipation: Unitary and non-unitary processes.
Journal of Physics: Conference Series, 380(1):012012, 2012.

Walck, S. N.; Glasbrenner, J. K., Lochman, M. H., & Hilbert, S. A. Topology
of the three-qubit space of entanglement types. Phys. Rev. A, 72:052324,
Nov 2005.

62 Malaysian Journal of Mathematical Sciences





